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SYMBOLS

van Driest damping coefficient

modeling constant in term representing turbulence dissipation,
equations (2) and (14)

specific heat at constantvpressure

turbulence function, equation (8)

specific kinetic energy of turbulence in incompressible flow
function of turbulence Reynolds number, equation (10)
mass—-averaged stagnation énthalpy of fluid

mass-averaged fluctuating static enthalpy

Karman constant in mixing length formulation

modeling constarit in term representing the redistribution between
Reynolds stresses

mass-averaged specific turbulence kinetic energy,.gagagﬂ;
length scale of turbulence

mixing length

turbulence function, equation (7)

mean local static pressure

fluctuating local static pressure

instantaneous heat fiux in ith direction by molecular means
Reynolds number of turbulence

empirical modeling constant, equation (13)

correlation length used by Glushko

instantaneous .rate of strain tensor

mass-averaged mean rate of strain tensor

mass—averaged fluctuating rate of strain tensor

instantaneous temperature
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mass-averaged mean temperature

fluctuating temperature in mass-—averaged coordinates
mean velocity in streamwise direction

mass-averaged mean velocity in ith direction
fluctuating velocity in streamwise direction
fluctuating velocity in ith direction
mass—averaged fluctuating velocity in dith direction
mean velocity normal to a surface

fluctuating velocity normal to a surface
coordinates in directions along and normal to a surface

empirical modeling constant, equation (12)

modeling constant related to a turbuleqt Prandtl number
viscous layer thickness

Kronecker delta, i = k, 8;; = 1; 1 #+ k, Gik =0

ratio 6f eddy diffusivity to kinematic viscosity

modeling constant in term representing turbulence dissipation;

equation (2)
empirical modeling constant,. equations (8) and (15)
kinematic viscosity on incompressible fluid
eddy diffusivity ’
mean density in a compressible fluid
density of an incompressible fluid
instantaneous stress caused by molecular motions (viscosity)
modeling constant in compressibility term, equation '(66)

partial differentiation in kth direction

time~averaged quantity



A ONE-EQUATION MODEL OF TURBULENCE FOR USE WITH
THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
Morris W. Rubesin

Ames Research Center
SUMMARY

The Glushko one-equation model of turbulence is extended to compressible
flows without boundary-layer approximations.)

INTRODUCTION

Recent advances in both computer technology and numerical analysis permit
the evaluation of compressible flow fields by numerically solving the complete
Navier-Stokes equations, including the energy equation for evaluating variable
fluid properties (e.g., ref. 1). Thus, flow fields containing separated
regions, which hitherto had to be treated by iterative procedures that coupled
essentially viscous-~ and inviscid-flow regions, can be treated as a single
field and solved with reasonable computer economy (refs. 2-5). A difficulty
arises, however, when these techniques are applied to turbulent flows through
the Reynolds stress formalism. For separated flows caused by adverse pressure
gradients, the comparatively large pressure gradients, both along and normal
to body surfaces, and the presence of the separated-flow region in close
proximity to a surface are factors outside the bounds of previous turbulence
modeling experience. Nonetheless, mixing length models, expressed by empirical
formulas evaluated from experiments on attached turbulent boundary layers in
equilibrium in the Clauser sense (ref. 6), have been tried in the numerical
solutions and the results have been compared with experimental data on turbu-
lent boundary layers separated by either incident shock waves or deflected
surfaces such as ramps (refs. 3 and 4). Although these computations yield
results for the flow-field quantities — surface skin friction and heat trans-
fer that have the general character of the data — their quantitative differ-
ences are rather large and in certain regions there are significant qualitative
differences as well. To improve the computations, intuitive relaxation models
were tried that use empirical formulas for mixing length and/or eddy viscosity
modified by a rate equation based on the degree of departure from local equi-
librium. Although the predictions of the pressure distributions were improved
for some experimental cases, the resulting skin-friction values generally were
not significantly better than the original models (ref. 7). An early version
of a two-equation model of turbulence was also tried (ref. 3) and the results
were not any better than those resulting from the empirical models.

The failure of the early two-equation turbulence model to improve the
calculations over the results from the empirical algebraic models illustrates
that more generality and complexity in turbulence modeling do not necessarily



assure greater accuracy in a particular application. It was decided therefore
to try a one-equation model for use with the compressible Navier-Stokes equa-
tions, but one that contains more of the physics of turbulence than the relaxa-
tion models and that is not as complex as a two-equation model. The incompres-
sible fluid model of Glushko (ref. 8) was adopted for this purpose because of
its rather direct formulation, its lack of arbitrary damping functions, and

its rather good representation of flat-plate boundary-layer flows. Also, this
model has been carefully compared with a well-documented incompressible
boundary-layer flow in an adverse pressure gradient. (ref. 9); modeling modifi-
cations based on the data are indicated there. The same authors also show
(ref. 10), that data obtained using the Glushko model agree fairly well with
other boundary-layer data obtained under other arbitrary pressure distributions.

The present report suggests the modeling modifications necessary to
extend the Glushko model to compressible flow within the full Navier-Stokes
equations. Implied in this extension is the assumption of the adequacy of the
empirical length scale inherent in the model to represent separated flows near
the surface. This report first presents an outline of the Glushko model for
incompressible boundary-layer flow. Then the compressible analog of the model
is derived in the absence of the boundary-layer approximation. Compressibility
introduces new terms modeled in two different ways to show the arbitrariness
inherent in the modeling process. The tentative model, subject to future test
against experiment, is then summarized.

GLUSHKO MODEL

The Glushko turbulence model for an incompressible, turbulent boundary-
layer flow is used to guide the development of a one~equation model of turbu-
lence applicable to the Navier-Stokes equations for compressible flows.

Glushko derived a model for the Reynolds stress, u'v', in the x~direction
momentum equation for an incompressible turbulent boundary-layer flow. The
Reynolds stress was shown to be expressible by the product of an eddy viscosity
and the strain of the mean flow, 3u/3y, in what is usually called the logarith-
mic region of the boundary layer. This eddy viscosity simplification was not
assumed a priori, but resulted directly from the Reynolds stress equations in
an analysis (ref. 11) using the boundary-layer assumptions and neglecting the
convection and diffusion of the Reynolds stresses. The principal turbulence
mechanisms used were the production, dissipation, and redistribution of the
individual components of the Reynolds stresses. For the later mechanisms,
Glushko used Rotta's models (ref. 12), namely,

Ve [ = 2
PO ) = K T (2 - 3 Spee @

for the redistribution of turbulence between the components of the Reynolds
stress and :



(2)

for the dissipation.

In addition to establishing an eddy viscosity form for the Reynolds shear
stress, Glushko's analysis also demonstrated that the eddy viscosity was
expressible in terms of a local turbulence Reynolds number defined as

YeL

= (3)
Glushko identified the length scale, L, with half the distance, S, where

the correlation ul(xl, x2)u (x , X, + 8) vanishes. Although this definition
of L 1is quite arbitrary in the moaeling equations, L always occurs in a
product with an empirical constant so that there is no loss of generality.
Finally, Glushko did not use the relationship between € and r found
directly from the analysis of the Reynolds stress equations, but used it to
justify the use of an empirically developed relationship between these quanti-
ties that presumably corrects for the previous neglect of the convection and
diffusion of the individual components of the Reynolds stresses.

The Glusko model for a two-dimensional incompressible, turbulent boundary
layer is

Continuity of mass:

34 3u
1

8_.......|.._a_g.=o (4)
X1 X2

Momentum balance in Xy direction:

ﬁl-;:—i—+ 2::;—-%%+-5% \)M—?% | (5)
Kinetic energy of turbulence:
_ de , - de ouy ) e . 3 [ 3
ul_Z);I-*-uZ-ZSr;:\)(M—l)(E.X_z) _VCD§+'§—)§(\JD§;> (6)
where
"M=1+ e(r) (7)
and
D=1+ e(ir) ' (8)



Note that the argument of €, the ratio of eddy diffusivity to kinematic vis-
cosity, in the definition of D has been altered by the empirical constant A
to account for differences in the transport of momentum and kinetic energy.
This can be considered as equivalent to introducing a Prandtl number for the
transport of turbulence kinetic energy. The ratio of eddy diffusivity to kine-

matic viscosity is expressed as

e = H(r)ar (9)

where H(r) 1is expressed empirically as

r/r, 0 <r/r, <0.75
H(r) = /vy - (r/ry - 0.75)%2 , 0.75 < r/r, £ 1.25 (10)
1, | 1.25 < r/r, <

The length scale is also given by an empirical expression based on flat-plate,
boundary-layer correlation length data, namely,

x2/6 . 0 = x,/8 £0.23 )

L/S = (x2/6 + 0.37)/2.61 , 0.23 < x2/6 < 0.57 (11)
(1.48 - x,/8)/2.52 ,  0.57 < x2/6 £ 1.48
With the empirical constants,

o= 0.2 (12)
r, = 110 (13)
Cc = 3.93 5 (14)
A = 0.4 | (15).

Equations (3) through (11) form a closed system that can be used to calculate
incompressible turbulent boundary-layer flow. It is emphasized again that e,
the specific turbulence kinetic energy, is found from a differential equation
involving the production, dissipation, and diffusion of turbulent kinetic
energy so that the turbulence need not be in equilibrium with the mead flow.
This dynamic characteristic is introduced back into the mean-flow equations
through the Reynolds number, r.

COMPRESSIBLE ANALOG TO GLUSHKO MODEL

To extend the foregoing model of turbulence to the compressible Navier-
Stokes equations, the use of mass-averaged dependent variables (ref. 13) is
adopted. The mean field equations, written in abbreviated differential form,
are



Continuity'of mass:
pat + (puj)’j =0 (16)-

Conservation of momentum in ith direction:

(6ﬁi)’t + [Bﬁjai + 6ij5 - (?ij - pu] U")] an
Conservation of thermal energy:
~ —e pugug .
—tr = - Ty - L L oS | O £ =
(pH p),t + ‘pujH4-qj4-pujh ui('r1 pu u ) - 1 13 5 . 0 (18)
> ]

The last term in equation (18) is usually neglected since it is smaller than
the thermal dissipation term to its left. The terms that must be evaluated

then to close these equations are pu"h" and pu" g

Consistent with the Glushko model, an eddy viscosity concept is adopted.
For nonboundary-layer flows, however, an additional assumption. that the eddy
viscosity is a scalar quantity is necessary. With these assumptions, the com-
ponents of the Reynolds stress tensor are written:

— . 2 . 2 .
Ve(uy 1,3 + Ui -3 Gijuk,k) - E'Sijpk (19)

in the notation of reference 13. The heat flux vector can be expressed as
oW _ _ _HE &
pujh = Pr, h’J (20)

or, in keeping with the way Giushko handled the transport of turbulence
kinetic energy,

puh" = —ﬁe(rf)ﬁ . (21)
] 2]

where T 1is a new universal constant related to the turbulent Prandtl number,
Pr. and T is defined later in equation (35).

From equation (19), the effective total shear stress, laminar plus turbu-
lent, can be written as

e 2 2 . -

where the mean strain of the flow is

- - 2 ~
S:: = UWs 4+ u: : - — sijuk,k (23)



With equations (19) through (23), equations (16) through (18) are closed once
g 1s defined.

To define ¢ (the ratio of eddy diffusivity to kinematic viscosity) when
the fluid is compressible, one must do the following:

D) Show that past experience makes it reasonable to use equatlon an
for the length scale in compressible flow.

(2) Show that € is a function of a turbulence Reynolds nuﬁber in com-~
pressible flow and show what form this Reynolds number takes.

(3) Model the turbulence kinetic energy equation to account for effects
of compressibility.

Length Scales in Compressible Flow

- For equilibrium turbulent boundary layers, it has been found that com-
pressibility has little direct effect on the length scales of turbulence. For
example, the early mixing length theories for a boundary layer on a flat plate
(e.g., refs. 14 and 15) and the more recent computer codes for calculating the
boundary-layer equations on two-dimensional bodies with mild pressure gradients
(ref. 16) have shown good agreement with experimental data up to Mach numbers
of 6 while treating the mixing length as being essentially independent of
density. This independence can be illustrated quite clearly through a con-
sideration of the turbulence model used in reference 16 where the eddy diffus-
ivity is expressed in terms of an inner and outer part of the boundary layer.
In either part of the boundary layer, reference 16 uses

_ ,2]98
Ve = 2 5y (24)
In the inner part, the mixing length scale is
linner = Ky[l - exp(-y/A)] . (25)
with
26 u
A= - (26)
"TuPr
on a flat plate with zero surface mass transfer and
K= 0.4 . ) @27

the usual Kirmin constant value. In reference 16, local properties are used
as the reference fluid properties in the definition of A in equation (27).
This causes the wvalue of A to depend somewhat on the density or compressi-
bility of the fluid within the sublayer adjacent to the surface. OQutside the

6



sublayer, however, vy > A so that the exponential term in equation (25) becomes
small and effects of compressibility tend to vanish from fLjpner. Thus, over
most of the inner region of the boundary layer, the length scale is independent
of the fluid density.

In the outer part of the boundary layer, reference 16 uses the Clauser
form of eddy diffusivity: ’ .

o0

' 6
vt,outer = {0.0168 .[ (ug = u)dy //1; 4+ 5.5 (%) ] (28)
)

Note that the density does not appear explicitly in this expression. Since the
eddy diffusivity in the outer part of the boundary layer is independent of
density, then, together with equation (24), the suggestion is that the length
scale in the outer part of the boundary layer is also independent of the den-
sity of the fluid, other than through the effect of compressibility on the ’
‘boundary-layer thickness 6. This is seen more directly in the model used in
reference 17, where outside the sublayer the mixing length is expressed as

. .
outer _ _fy
s f(d) (29)
so as to be independent of density.

From the above discussion of mixing length used in programs that accu-
rately predict near-equilibrium turbulent boundary-layer behavior, it can be
concluded that the length scale L in equation (11) will apply to compressible
flows as well. 1Its application to separated flows is less clear and modifica-
tions may be needed under those conditioms. . '

-

Turbulence Reynolds Number in Compressible Flow

In a compressible turbulent boundary layer, the total shear stress
expressed in equation (22) reduces to

—— U -~ .
T =Ty, = pujuy = (1l + €) 3y - ov(l + ) — (30)

The mixing length expression, equation (24), can be written in terms of the
ratio of eddy diffusivity to the kinematic viscosity as

= e = g2 91
Ve = Ve = & 3y (31
Equations (30) and (31) combine to yield

(1/5)22
52

e(l 4+ ¢) = (32)



In the fully turbulent portion of the boundary layer, € >> 1 and

o ar
%-.—__Ql-‘_b;’_ (33)

so that under these conditions

€ V-(pu :)7"/9 (34)

Thus, € identifies with a turbulent Reynolds number based on local fluid
properties and the local correlation of the fluctuating velocities. This sug-
gests, by analogy, that the Glushko model can be extended to compressible
flows by use of equation (9), but with the turbulence Reynolds number T
redefined as

) -

where k 1is the mass-averaged kinetic energy of turbulence and V is the
local kinematic viscosity.
Second-Order Modeling of Turbulence in Kinetic Energy Equation

The local mass—averaged specific kinetic energy of turbulence is'repre—
sented in reference 13 by

@GR ¢ + Gk 5 = -(ufuDsy ;- (Guk) ;- @p) 1 +puf 4+ (@it - T4q0]

(36)

The first term on the right in equation (36) can be related through equa-

tion (19) to the mean velocity field and the compressible extension of equa-
tion (9), namely, € = H(T)ar. The second term, having divergence form, repre-
sents a diffusion of the instantaneous turbulence kinetic energy by the
turbulence itself. The third and fourth terms representing pressure and veloc-
ity correlations and the fifth and sixth terms containing molecular-shear and
velocity correlations must be modeled to close equation (36).

Models of pressure and velocity correlations.- When the pressure in the
abovementioned terms is represented as the sum of a mean value plus a flue-
tuating quantity, p = P + p', the pressure and velocity correlation terms
become

e

. T T W (T} ' .
PV = - (u} p) - (ufp ) 3 vpuf ; +pluf (37

For incompressible flow, both ui 0 and u1 i = 0 so that only the second
term on the right remains. This term, having a divergence form, is identified
with the diffusion of turbulent pressure fluctuations by the turbulence and is

usually grouped with the second term on the right in equation (36). The other

8



terms in equation (37) require models that converge to zero when the flow is
incompressible. Thus, grouping these terms yields

PV + (ujp') 4 = 1p it p'ug i (38)

To evaluate the quantity u:L in the first term on the right in equa-~
tion (38), it can be assumed first that the total temperature of the fluid is
constant within a field of turbulent eddies:

Tk

T, =T+ 7§¥7 = const ' » (39)

When T 1is replaced by a mean and fluctuating mass-averaged quantity (ref. 13),

T=T+T1" : (40)
and
e = O+ : (41)
Then
11
. 2c p Zc t
On averaging, equation (42) becomes
~o ~oTo BT
4 k% “k“k
T+T" e " e = T, (43)
P % P
Equation (43) subtracted from (42) yields
~ 1,0 v
T"——T— ;k_( " ,) + uk zcuk =0 (44)
P P
which is satisfied by
ol "n.n
w
" X
™ + < uk 2cp =0 (45)

Since the mean velocity in at least one direction will be much larger than the
fluctuating velocity in that direction, the above equation can be well repre-
sented by its leading terms:

w | (46)



At this point, it is usual to argue that pressure fluctuations are of a
smaller order than either density or temperature fluctuations,.and this assump-
tion, together with the perfect gas equation, permits one to identify the tem-
perature fluctuation with a density fluctuation in equation (46), thus relating
density and velocity fluctuations. Since this assumption is suspect at high
Mach numbers, an alternative assumption will be proposed, namely, that the gas
behaves in a polytropic manner. Then

| n :11"

P_,el___n T
P "% @-D F - A

where n is the polytropic coefficient (n = 0, isobaric; n = 1, isothermal;
n = cp/cy, isentropic, etc.).

From equations (46) and (47), the density fluctuation is related to the
velocity fluctuation as

L P I |
- P T T@ - Dot 'k e
With equation (48),
puy
= - _ - l ==
YT T TS (n - De,T k7K1 (49

If the third-order correlations between the density and velocity are neglected,

"

e (s -%5 %
U7 T @ - Dyt “k("esik 3 611:“) (50

Since the wvalue of n is not known, it, in effect, becomes a modeling coeffi-
cient and equation (50) can be used to define the first term in equation (38).
Note that n - » for incompressible flow (see eq. (47)) and uj ~ 0 as
required. Under boundary-layer assumptions, the only appropriate value for

the index is 1 = 1 and, consequently, equation (49) reduces to

o (R} s

?
|

u,uu u, k
=7 _ 1T 1 _ (r = 1) 1
u Tzr:fijzgf const Ygf:fisggf = const ?;—:—Iy-za— (51)

Since k/a? 1is a measure of the square of the turbulence Mach number, uy is
expected to be small if n takes on a value of about 1.2 as expected in non-
isentropic flows. This latter form is identical with the Alber and Wilcox
representation (ref. 18), except that the n must be less than unity to have
the same sign as in their work.

An alternative representation of 'Eg that does not require the assump-
tion of constant total temperature within the turbulence is

W = - === - = yF Ty (52)



If density fluctuations are small compared to the mean density, then equa-
tion (52) can be rewritten as

1 (Y - 1)

= _ 1 ——w o  PEYES
YT T @ Do Pt T - Dp He (FE)h 4 (53)
or '
—_ (Y -1 3edD - |
YT D a2 i (54)

In the absence of an application of either equation (50) or (54) to predict
several sets of experimental data, it is not clear at this point which is the
better model, although equation (54) has the advantage of being simpler and not
requiring the assumption of a constant total temperature within an eddy. This
latter assumption turns out to be rather significant. For example, in boundary-
layer flow and with, say, n > 1, equation (51) would assign a positive value to
u]. On the other hand, for the same conditions, equation (54) can assign

either positive or negative values, depending on whether the flow was over a
cooled or a heated surface. This illustrates how tenuous modeling assumptions

.are until established by comparison with data.

With the assumption that state variables within an eddy behave in a poly-
tropic fashion, the third term on the right in equation (38) is expressed as

] __,B_E [ )
puj ; =5 o'uy 4 . (55)

The instantaneous continuity equation

p,t + (puj),j =0 (56)

when written in terms of mean and fluctuating quantities is

= v = = v 1. =
bt + o't + (puj + puj + p uj + 0 uj),j 0 (57)

When equation (16) is subtracted from this equation, the instantaneous fluc-
tuations of density and velocity are related by

p't + (Eug + p'ﬁj + p'ug) j =0 (58)
] bl

If the mean flow varies slowly over the scale of an eddy, and only the linear
terms in the fluctuatioms are retained, equation (58) reduces to its highest

order terms:

+ d.p'. +pou" . =0 (59)

With equation (59) multiplied by p' and then time-averaged,

11



p' + ﬁ p' + Eplu" = O (60)
2 ). "\2). 3,
2 ’J .

The time~averaged quantities now scale with the dimensions of the mean flow
field and can be compared with the mean continuity equation in similar form:

p_+up.+plu, .=0 61
Pt Jp,J °%,3 (61)

If the rms density fluctuation intensity is called B8:

& e

2(6  + 8P )+ P + §,8 T, =
B (p,t qu,J) pB(B’t uJB,J) +puj’j 0 (63)

then equation (60) becomes

It is now assumed that the intensity of turbulence changes relatively slowly
along the streamlines in contrast to across the streamlines, so that the second
term in equation (63) can be neglected. With equation (61), the resulting
equation reduces to

W' = 62—~- . 64
e uJaJ puJ’J (64)

The wvariation in turbulence intensity B from streamline to streamline, can
be accounted for by setting B2 proportional to the local kinetic energy of
the turbulence. Usually, &, > §,, even in separated flows, so that equa-
tion (48) permits one to write

2 6 k
B< = const E;r . gi (65)
which, together with equations (55) and (64), gives
— _5° ko .
pluy ; = %P 7 22 8,3 / (66)

where ¢ 1is a modeling coefficient that includes the polytropic coefficient.

Models of molecular—-shear and velocity correlations.- The molecular-shear
and velocity correlation terms in equation (36) provide for the dissipation
and diffusion, by molecular processes, of the specific turbulence kinetic
energy. To demonstrate the assumptions underlying the modeling of some ele-
ments of these terms, one must first expand the form of the terms to reveal
their components.

12



At an instant of time, the local molecular shear is expressed as

Tij = uSij (67)

where u and Sij are the instantaneous viscosity and strain. Specifically,

2
£,3 7 %,1 73 Otk | %

When each variable is expressed as the sum of a mass-averaged mean quantity
plus a fluctuation, equation (67) becomes

= NG ~alt na fnan
T4 “Sij + “Sij + u s:,Lj + u sij (69)
With equation (69), the molecular-shear and velocity correlation terms in A
equation (36) can be written as

MSV

[T - "
Cuytis),3 7 T1Y,

= a7 (1S + af(@sY,) .+ ul(u"S..) . + uT("sY.)) . 70
(0 1J) j + ul (B 13),3 1 13),3 7 (u 13),3 (70)
The terms containing u" are neglected. The justification for this is that
the third term should be negligibly small compared to the first because " < {i
and the correlation coefficient between u1 and u is much less than

unlty. By similar reasoning, the fourth term is smail compared to the second.
When the remaining terms are expanded,

al-

= g ~ Qi - man T
MSV ( S; ),j + (““isij),j USijui,j
=—~~. L+ (k. ._~l-l.|.| T -—6 YRR 71
wjS ) g+ Bk gD g - Buy gup v Quy 9 sluiCiy ) (71)

The first, fourth, and fifth terms then vanish in incompressible flow since

ug = 0 and uk k = 0. For compressible flow, the following arguments can be
used to Justlfy neglecting the fourth and fifth terms. Since they contain the
second derivatives of fluctuating quantities before averaging, the smallest
eddies should contribute most to these quantities. The smallest eddies, how-
ever, tend to be isotropic (ref. 19), and, if the variation of {I over the
dimensions of these small eddies is neglected, slight extensions of the
methods in reference 20 (ch. 3), show that u" v = uiul .  vanish for

i%3,1,3 T YiY3,3,1
isotropic turbulence in a compressible fluid.

The final expre581on then for the molecular-shear and velocity correla-
tion term is

MSV = u"(@iS,.) . + (ik ,) , - fiu7 a7 | 72
1(11 13)3.] ( ’J)sJ s 1,3 1,3 ( )

In keeping with the Glushko model, the third term representing the dissipation
of the specific kinetic energy of the turbulence is modeled as

13



ﬁ_u;’_jug,j = iic 11‘5 [1+ e(AD)] (73)

The Gg in the first term can be taken from equation (54).

Model of third~order correlation term.- The divergence terms on the right
in equation (36) are grouped and modeled as follows:

(ou'j'k)’. + (u"p ) [ug'(p' + pu}gu'pj)]’:l

~tie(AD)k ; (74)

SUMMARY OF ONE-EQUATION TURBULENCE MODEL IN COMPRESSIBLE FLOW
The system of equations that represents a one-equation model of compres-
sible turbulent flow is as follows:

Continuity of mass (see eq. (16)):

B+ (Bu) =0 (75)

Conservation of momentum in ith direction (see eqs. (17), (22), and (23)):

- - e - — - lf
(pui),t + [puiuj + Sijp (Tij Du u )] (76)
where
= _ T _ o =yia _ 2 =%
Tij ou" u.J a1 + x—:(r)]Sij 3 Sijpk ) an
and
§..=@, ., +0 -25 3 (78)
ij - 4,37 Y517 3 Ttk

Conservation of thermal energy (see eqs. (18) and (21)):

o — TR _ x (= L W =
(pH P)’t + [DujH +q, pujh ui('rij puff u )] 0 (79)
where
] - ‘ - 1 .
qg. + pu"h" = ~{i|=— + e(TE)h . ~ 80
45 * puy u[Pr ( ]h’J (80)

Specific turbulence kinetic-energy equation (see eqs. (36), (39), (54), (74),
and (77)):

=7 =~ 3 I T ] PH R renanst e (T T (1l T
(pk)’t-l-(pujk)’j pujull, | (pujk)’ (u ) 4-[PV4-MSV4-(u ) ] (81)
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(u"p' + pu“k) i = -fie (AF)k (82)

9 ’j
+ SRR = ” [N}
PV (u p') g uip,i + p ui,i (83)
— _ (¥ - 1) ve(IT) »
u T (n-1) a2 h,i (84)
~12 -
] 1" — k ~e
. . = —s — 4, 85
Pluy 4 cp 22 22 Y5 (85)
—— e - k
MSV = u'({1S,.) , + (fk .) . -~ §iC— [1 + ()T 86
3 (7 13)’J (k) ;-8 2 (1 +:0D)] (86)
These equations combine to yield
- —— Ty % 2 - R
k + a.k) . = f{i S,.4, ., - = 6,.pkin, ., + {fi{l + A k .
® )’t (puJ ),J fie (%) 139,17 3 6139 LI {uf e(A) ] ’J},J
-u'p . + ;I’-Eﬁ. A+ (8, )) . - ﬁC—E- 1+ e(B)] (8N
iv,1i V2 3] 177437,

where n, %, and I' are new modeling coefficients. Additional modeling quan-
tities are

T = '/Z‘-L (88)
e = H(F)aF ‘ (89)

/T, » 0 < ¥/F, < 0.75
H(E) = {%/%, - (F/%, - 0.75)%2 , 0.75 5 T/, < 1.25 (90)

1, 1.25 s F/E, < =

and
x,/8 , 0 < x,/6 <0.23

L/§ = { (x,/8 + 0.37)/2.61 , 0.23 5 x,/8 < 0.57 (91)

(1.48 - x,/86)/2.52 , 0.57 < x,/8 < 1.48
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where

o= 0.2
T = 110
° (92)
C = 3.93
A= 0.4

CONCLUDING REMARKS

The set of equations summarized in the preceding section is closed when
the modeling parameters n, L, and I' are established. To do this, one must
eventually compare the predictions given by the model with the data from a
series of experiments that covers a sizable range of Mach and Reynolds numbers.
At this point, all that can be done is to offer suggestions for the first set
of trial values of these parameters. For example, in nonisentropic inviscid
flows, values of n = 1.2 seem to fit much of the data._Consistent with this
value of n, vy = 1.4 and for the relationship between 'z _and k that
occurs in an equilibrium boundary layer, that is, u"? = 8/9 k, ¢ = 8/11. The
quantity I is identified with the turbulent Prandtl number, T = 1/Pry, for
which T = 1.1 is a reasonable first trial value.
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